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Abstract 

The principal characteristics of the variability of Antarctic sea ice 
cover as previously described from satellite passive microwave 
observations are also evident in a systematically calibrated and 
analyzed data set for 20.2 years (1979–1998). The total Antarctic 
sea ice extent (concentration >15%) increased by 11,180 ± 4190 
km2 yr−1 (0.98 ± 0.37% (decade)−1). The increase in the area of sea 
ice within the extent boundary is similar (10,860 ± 3720 km2 yr−1 
and 1.26 ± 0.43% (decade)−1). Regionally, the trends in extent are 
positive in the Weddel Sea (1.4 ± 0.9% (decade)−1), Pacific Ocean 
(2.0 ± 1.4% (decade)−1), and Ross (6.7 ± 1.1% (decade)−1) sectors, 
slightly negative in the Indian Ocean (−1.0 ± 1.0% (decade)−1), and 
strongly negative in the Bellingshausen-Amundsen Seas sector 



(−9.7 ± 1.5% (decade)−1)). For the entire ice pack, ice increases 
occur in all seasons, with the largest increase during fall. On a 
regional basis the trends differ season to season. During summer 
and fall the trends are positive or near zero in all sectors except the 
Bellingshausen-Amundsen Seas sector. During winter and spring 
the trends are negative or near zero in all sectors except the Ross 
Sea, which has positive trends in all seasons. Components of 
interannual variability with periods of about 3–5 years are 
regionally large but tend to counterbalance each other in the total 
ice pack. The interannual variability of the annual mean sea ice 
extent is only 1.6% overall, compared to 6–9% in each of five 
regional sectors. Analysis of the relation between regional sea ice 
extents and spatially averaged surface temperatures over the ice 
pack gives an overall sensitivity between winter ice cover and 
temperature of −0.7% change in sea ice extent per degree Kelvin. 
For summer some regional ice extents vary positively with 
temperature, and others vary negatively. The observed increase in 
Antarctic sea ice cover is counter to the observed decreases in the 
Arctic. It is also qualitatively consistent with the counterintuitive 
prediction of a global atmospheric-ocean model of increasing sea 
ice around Antarctica with climate warming due to the stabilizing 
effects of increased snowfall on the Southern Ocean. 
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for direct comparison with satellite data sets, the mean trend was
found to be a slight cooling at �0.008 ± 0.016, with 12 stations
having negative trends and 9 stations having positive trends. Such
general cooling during the last 20 years is also suggested by satellite
infrared data [Comiso, 2000]. Qualitatively, these results are con-
sistent with trend values shown in Tables 10 and 11.

8. Effects of the Antarctic Circumpolar Wave

[49] In the sea ice extent curves for the five Antarctic sectors
(Figures 3–7) one can visualize the effects of a wave occasion-
ally influencing a given region on the basis of a low-frequency
wavelike envelope superimposed on the seasonal oscillations.
One possibility for wavelike phenomena is the ACW, charac-
terized by a pattern of wave number 2 and circumpolar migra-
tion time of 8 years [White and Peterson, 1996]. Their initial
ACW observation has been confirmed more recently with differ-

ent techniques [Gloersen and Huang, 1999; Gloersen and White,
2001]. Gloersen and Huang [1999] utilized a combination of
complex singular-value decomposition (CSVD) and empirical
mode decomposition (EMD) [Huang et al., 1998] to isolate
the ACW as residing principally in the quasiquadrennial (QQ)
mode separated by the EMD. The Hoffmueller diagram [Huang
et al., 1998, Figure 6a] clearly depicts several cycles of the
ACW. Here we utilize the data array, which was the basis of
Huang et al.’s [1998] Figure 6, with ice extents in 1� sectors
around the South Pole to produce sums of the QQ oscillations in
each of five sectors (Table 1) as well as the entire pack. These
sums are shown in Figure 23 for comparisons with ice extent
variations in Figures 2–7. Although five sectors is not optimum
for displaying the characteristics of a wave number 2 pattern,
the ACW can be discerned. For example, comparing the results
in the Hoffmueller diagram [Gloersen and Huang, 1999] for a
persistent ACW trough that begins at 0�E in 1986, in Figure 23
the averaged trough is shown in the Weddell sector also in
1986, in the Indian sector in 1987, in the western Pacific sector
in mid-1988, in the Ross sector in mid-1991, and finally, in the
B/A sector in 1993.
[50] Although the QQ oscillations associated with the ACW are

prominent, the magnitude of their amplitudes (]0.08 � 106 km2

peak to peak) is only 	1/25 compared to the maximum interannual
deviations in extent (]2 � 106 km2 in Figures 3b–7b). The
amplitudes of the QQ oscillations are also only 	1/3 compared
to the 3–5 cycles of interannual variability (amplitudes ]0.26 �
106 km2), as deduced from the multivariate analysis and shown in
Table 4 and the fitted cycles in Figures 3b–7b. Therefore the
interannual variability associated with the ACW appears to be only
part of the total quasi-periodic interannual variability and small
compared to the total interannual variability.

9. Discussion and Conclusions

[51] A primary result of this analysis of the 20 years of
measurements of sea ice concentration on the Southern Ocean is
the +11,181 ± 4190 km2 yr�1 (+0.98 ± 0.37% (decade)�1) increase
in sea ice extent and a very similar +10,860 ± 3720 km2 yr�1

(+1.26 ± 0.43% (decade)�1) increase in sea ice area. Regionally,
the trends in extent are positive in the Weddell Sea (1.4 ± 0.9%
(decade)�1), Pacific Ocean (2.0 ± 1.4% (decade)�1), and Ross Sea
(6.7 ± 1.1% (decade)�1) sectors, slightly negative in the Indian
Ocean (�1.0 ± 1.0% (decade)�1), and negative in the Belling-
shausen/Amundsen Seas sector (�9.7 ± 1.5% (decade)�1). An
overall increase in Antarctic sea ice cover, during a period when
global climate appears to have been warming by 0.2 K (decade)�1

[Hansen et al., 1999], stands in marked contrast to the observed
decrease in the Arctic sea ice extent of �34,300 ± 3700 km2 yr�1

(�2.8 ± 0.3% (decade)�1) and sea ice area of �29,500 ± 3800 km2

yr�1 (�2.8 ± 0.4% (decade)�1 ) in sea ice area [Parkinson et al.,
1999]. The observed decrease in the Arctic has been partially
attributed to greenhouse warming through climate model simula-
tions with increased CO2 and aerosols [Vinnikov et al., 1999]. As
discussed in section 1, an increasing Antarctic sea ice cover is
consistent with at least one climate model that includes coupled
ice-ocean-atmosphere interactions and a doubling of CO2 content
over 80 years [Manabe et al., 1992].
[52] Another main aspect of the results is the seasonality of the

changes, being largest in autumn in both magnitude (+24,700 ±
17,500 km2 yr�1) and percentage (+2.5 ± 1.8% (decade)�1) and
second largest in summer (+6700 ± 12,600 km2 yr�1 and +1.7 ±
3.2% (decade)�1) in terms of percentage change. The changes for
the winter season (+7400 ± 8500 km2 yr�1 and +0.4 ± 0.5%
(decade)�1) and for spring (+10,100 ± 14,000 km2 yr�1 and +0.7 ±
1.0% (decade)�1) are small as a fractional change. On a regional
basis the trends differ season to season. During summer and fall the
trends are positive or near zero in all sectors except the Belling-

Figure 22. Relations between regionally averaged sea ice extents
and regionally averaged surface temperatures over the ice pack as
derived from satellite infrared for (a) summer month of January
showing generally consistent relations from sector to sector and (b)
winter month of July showing negative relations between sea ice
extents and temperature. See color version of this figure at back of
this issue.
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shausen/Amundsen Seas sector. During winter and spring the
trends are negative or near zero in all sectors except the Ross
Sea, which has positive trends in all seasons.
[53] In the context of climate change the sensitivity of the sea

ice to changes in temperature is of particular interest. Analysis of
the relation between regional sea ice extents and spatially averaged
surface temperatures over the ice pack gives an overall sensitivity
between winter ice cover and temperature of �0.70% change in sea
ice extent per degree Kelvin (�0.11 ± 0.09 � 106 km2 K�1). A
change in the winter ice extent of 0.70% corresponds to a
latitudinal change in the average position of ice edge of <10 km
or a meridional change of <0.1�, which is small compared to some
previous estimates [e.g., Parkinson and Bindschadler, 1984]. For
summer some regional ice extents vary positively with temper-
ature, and others vary negatively.
[54] The validity of the derived decadal-scale trends depends on

two key aspects of this 20 year data set. One is the long-term
relative accuracy of the data from multiple satellites with somewhat
different sensors and the data processing methodology as described
by Cavalieri et al. [1999]. The changes in sea ice cover as small
as 1% (decade)�1 may have climatic significance. This required
relative accuracy and long-term data consistency could not have
been achieved without the 4–6 week periods of overlap from
successive satellites, which enabled the algorithm adjustments to
make the derived sea ice extents and areas match. Even though the
instrumental differences between satellites are small, it has not
been possible to understand the differences well enough to provide
a satisfactory intercalibration any other way.

[55] The second key aspect is the complete spatial coverage on
daily timescales that allowed the spatial and temporal variability to
be quantified adequately in relation to the trends. The character-
ization of the interannual variability in particular has allowed a
calculation of trends that is largely independent of the effects of the
periodic components of the variability. In addition, the analysis of
data over 2 decades provides some indication of the interdecadal
variability of the sea ice cover and provides a basis for future
analysis of continuing observations for interdecadal changes.
Determination of such interdecadal changes will be particularly
important as sea ice changes might accelerate with an increase in
climate warming.
[56] The interannual variability of the annual mean sea ice extent

is only 1.6% overall, compared to 6–9% in each of five regional
sectors. The total variability in the monthly deviations in sea ice
extent is 3.4% overall and from 8 to 15% in the individual sectors.
From the first 10 years to the second 10 years there appears to be a
decrease in the variability from 4.0 to 2.7%. Also, there appears to
be a decline in the effectiveness in which the anomalies from sector
to sector offset each other in the overall spatial average. Analysis of
the relative trends in ice extent and ice area imply increases in ice
concentration in the western Pacific and Ross Sea sectors, which
could be associated with decreases in variability in those regions.
[57] Although there are significant components of interannual

variability with periods of 3–5 years, these represent only about
20–40% of the total variability in the monthly deviations of the
mean. Inclusion of a periodic component in the MOLS gives trends
that are considered to be better values than the OLS trends.
Nevertheless, the inclusion of about five cycles in the 20 year data
set and the smallness of the periodic amplitudes minimize the
effect on the calculated linear trends by the OLS method. Therefore
the MOLS and the OLS trends do not differ by more than 0.1s
overall and more than 1s in the individual sectors.
[58] An interesting aspect of the interannual variability of the

seasonal changes is the tendency for periods of greater sea ice
extents near the winter maxima to be associated with periods of
lesser sea ice extents near the summer minima and vice versa. In
addition, this phenomenon has a period of 3–5 years and tends to
vary in phase from sector to sector. The phase of the 3–5 year
periodic components of the interannual variability progresses from
sector to sector from the Weddell Sea along East Antarctica but not
consistently through to the Ross Sea sector and Bellingshausen/
Amundsen Seas sector. The same effect is shown in Figure 23.
While there is an association of the variations with the ACW on a
sector-to-sector basis, the association is not as clear as in the more
detailed analysis of extents in 1� longitudinal sectors by Gloersen
and Huang [1999].
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